Monday, 22 January 2018

2D Ising model v1.1.1

This updated version now has an accurate Y-axis scale on magnetism and Energy graphs. A 10x10 lattice is simulated as to compare with the graphs from Giordano s book. The temperature interval is set to .1 as to achieve a quick simulation.

"""
2D Ising model v1.1.1

Modified
Version 1.0: Thu Nov  9 17:34:37 2017
Version 1.1: Sun Jan 21 18:54:34 2018
Version 1.1.1 Mon Jan 22 20:34:28 2018

@author: jameslowe1995

"""
#libraries
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from random import randint
from numpy.random import rand
import numpy

#Adjustable Varibles
H = 2   # Initializng lattice: 1 = all +1s, 2 = all -1s, 3 = random +1s and -1s
Tfinal = 4 #Final temperature
Tinterval = .1 # Intervals between temperature points
T = 1 #Starting temperature
L = 10 #Lattice array L*L
MonteCarloSweeps = 1000 #Monte Carlo Sweeps

#Fixed variables
i = 1
j = 1
r = 0
m = 0
Kb = 1.38064852e-23 #Boltzmanns constant

if H == 1:

    #Initialize lattice all +1s
    lattice = numpy.zeros((L, L))+1

if H == 2:

    #Initialize lattice all -1s
    lattice = numpy.zeros((L, L))-1

if H ==3:
    #Initialize lattice random +1s and -1s
    lattice = 2*np.random.randint(2, size=(L,L))-1

#plot intial lattice           
plt.figure(4,figsize=(10, 10), dpi=80)
X, Y = np.meshgrid(range(L), range(L))
plt.pcolormesh(X, Y, lattice, cmap=plt.cm.RdBu);
plt.xlabel("Initial configuration")

while T <= Tfinal:

    sweeps = 0
    x = 0
    y = 0
    z = 0
    energy = 0
    magnetism =0
    E = 0
    M = 0
    latticetotal = numpy.zeros((L, L))

    while sweeps < MonteCarloSweeps:
      while z == 0:
            if x < (L):
                if y < (L):
                    s =  lattice[x, y]

                    #boundary condition 1
                    if y == 0:
                        if x == 0:
                            Eflip = lattice[(x+1)%L,y] + lattice[x,(y+1)%L] + lattice[(L-1)%L,y] + lattice[x,(L-1)%L]               

                    #boundary condition 2
                    if y == 0:
                        if x < L-1:
                            if x != 0:
                                Eflip = lattice[(x+1)%L,y] + lattice[x,(y+1)%L] + lattice[(x-1)%L,y] + lattice[x,(L-1)%L]     

                    #boundary condition 3 
                    if y == 0:
                        if x == L-1:
                            Eflip = lattice[(0)%L,y] + lattice[x,(y+1)%L] + lattice[(x-1)%L,y] + lattice[x,(L-1)%L] 

                    #boundary condition 4 
                    if y > 0:
                        if x == 0:
                            Eflip = lattice[(x+1)%L,y] + lattice[x,(y+1)%L] + lattice[(x-1)%L,y]+lattice[(L-1)%L,y]

                    #boundary condition 5       
                    if y > 0:
                        if y != L-1:
                            if x == L-1:
                                Eflip = lattice[(x-1)%L,y] + lattice[x,(y+1)%L] + lattice[(x-1)%L,y]+lattice[(0)%L,y]

                    #boundary condition 6
                    if y == L-1:
                        if x == 0:
                            Eflip = lattice[(x+1)%L,y] + lattice[x,(0)%L] + lattice[(L-1)%L,y]+lattice[x,(y-1)%L]

                    #boundary condition 7                     
                    if y == L-1:
                        if x < L-1:
                            if x != 0:
                                Eflip = lattice[(x+1)%L,y] + lattice[x,(0)%L] + lattice[(x-1)%L,y]+ lattice[x,(y-1)%L]                           

                    #boundary condition 8           
                    if y == L-1:
                        if x == L-1:
                            Eflip = lattice[(0)%L,y] + lattice[x,(L-1)%L] + lattice[(x-1)%L,y]+ lattice[x,(y-1)%L]

                    #boundary condition 9                     
                    if y < L-1:
                        if y > 0:
                            if x < L-1:
                                if x > 0:
                                    Eflip = lattice[(x+1)%L,y] + lattice[x,(y+1)%L] + lattice[(x-1)%L,y]+ lattice[x,(y-1)%L]
                           
                    Eflip2 = 2*s*Eflip

                    if Eflip2 < 0:
                        s = s*-1 #flip the value

                    elif rand() < np.exp(-Eflip2*(1/T)):
                        s = s*-1 #flip the value
                 
                lattice[x,y] = s               

                if y <= L-1:
                    x = x + 1

                    if x == L:
                        x = 0
                        y = y + 1

                if y == L:
                    x = 0
                    y = 0
                    sweeps = sweeps + 1                   

                value = lattice[x,y]
                energy += Eflip*(-value)
                magnetism = np.sum(lattice)

                E = E + energy
                E = E/4
                M = M + magnetism
             


                if sweeps == MonteCarloSweeps:
                    z = 1                   

    E = (E/(MonteCarloSweeps*L*L))
    M = (M/(L*L*MonteCarloSweeps*100))     
 
    print("Energy = ", E, " - magnetism = ",abs(M), " at temperature = ", T)
 
    #plot the lattice           
    plt.figure(figsize=(10, 10), dpi=80);
    X, Y = np.meshgrid(range(L), range(L))
    plt.pcolormesh(X, Y, lattice, cmap=plt.cm.RdBu);
    plt.xlabel(T)

    plt.figure(2,figsize=(15, 10))
    plt.plot(T, E, 'ro', )
    plt.xlabel("Temperature (T)",)
    plt.ylabel("Energy ")

    plt.figure(3,figsize=(15, 10))
    plt.plot(T, abs(M), 'bo')
    plt.xlabel("Temperature (T)")
    plt.ylabel("Magnetization ")

    T = T + Tinterval







On a side note by setting the Monte Carlo sweeps to 1 it is possible to see the relationship between each temperature point. Below is a 100x100 lattice with a temperature interval of 0.1 





No comments:

Post a Comment